Title	Long Straight Section				
Project Requestor	Greg Wiemerslage				
Date	3/21/08				
Group Leader(s)	P. DenHartog				
Machine or Sector	Efim Gluskin				
Manager					
Category	Accelerator hardware and Insertion Device Upgrades				
Content ID*	APS_1254431	Rev.	2	3/21/08 3:17 PM	

^{*}This row is filled in automatically on check in to ICMS. See Note ¹

Description:

Start Year (FY)	2009	Duration (Yr)	3

Objectives:

Design and prototype a long straight section for the Advanced Photon Source storage ring.

Benefit:

This would allow more than two 2.4 m long undulators or an undulator in excess of five meters in length in a single straight section. It would also enable the possibility of a superconducting undulator combined with a hybrid undulator.

Risks	of Pro	iect:	See	Note	2
I/I2I/2	OLITO	jeei.	SCC	NOIC	

NA at this phase.

Consequences of Not Doing Project: See Note ³

If the proposed project is not undertakenthe options for undulators will be limited to the current configuration.

Cost/Benefit Analysis: See Note ⁴

The APS has previously investigated options for increasing the active length for undulators. See

http://www.aps4.anl.gov/operations/ops_www/APSOnly/LongStraightSection/LongStrai

ghtSection.html

Case 1 which increases the available space for an undulator vacuum to 8.51 m is seen as the most cost effective. Other cases result in significantly higher costs,

Description:

Design and fabricate and assemble the girders upstream and downstream of the undulator that implement the Case 1 design and design and fabricate a long ID vacuum chamber.

Funding Details

Cost: (\$K)

Use FY08 dollars.

Year	AIP	Contingency
1	100	
2	200	
3	100	
4		
5		
6		
7		
8		
9		
Total	400	20%

Contingency may be in dollars or percent. Enter figure for total project contingency.

Effort: (FTE)

The effort portion need not be filled out in detail by March 28

The effort portion need not be filled out in detail by March 28

Effort (FTE)

	Mechanical	Electrical		Software				
Year	Engineer	Engineer	Physicist	Engineer	Tech	Designer	Post Doc	Total
1	1				0.3	1		2.3
2	0.5				1	0.5		2
3	0.25				0.5	0.1		0.85
4								0
5								0
6								0

Notes:

¹ ICMS. Check in first revision to ICMS as a *New Check In*. Subsequent revisions should be checked in as revisions to that document i.e. Check Out the previous version and Check In the new version. Be sure to complete the *Document Date* field on the check in screen.

² Risk Assessment. Advise of the potential impact to the facility or operations that may result as a consequence of performing the proposed activity. Example: If the proposed project is undertaken then other systems impacted by the work include ... (If no assessment is appropriate then enter NA.)

³ Consequence Assessment. Advise of the potential consequences to the facility or to operations if the proposal is not executed. Example: If the proposed project is not undertaken then _____ may happen to the facility. (If no assessment is appropriate then enter NA.)

⁴ Cost Benefit Analysis. Describe cost efficiencies or value of the risk mitigated by the expenditure. Example: Failure to complete this maintenance project will result in increased total costs to the APS for emergency repairs and this investment of ___ will also result in improved reliability of ____. (If no assessment is appropriate then enter NA.)